A Candidate Counterexample to the Easy Cylinders Conjecture

نویسنده

  • Oded Goldreich
چکیده

We present a candidate counterexample to the easy cylinders conjecture, which was recently suggested by Manindra Agrawal and Osamu Watanabe (see ECCC, TR09-019). Loosely speaking, the conjecture asserts that any 1-1 function in P/poly can be decomposed into “cylinders” of sub-exponential size that can each be inverted by some polynomial-size circuit. Although all popular one-way functions have such easy (to invert) cylinders, we suggest a possible counterexample. Our suggestion builds on the candidate one-way function based on expander graphs (see ECCC, TR00-090), and essentially consists of iterating this function polynomially many times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

Hadwiger's conjecture for K 6-free graphs

In 1943, Hadwiger made the conjecture that every loopless graph not contractible to the complete graph on t+1 vertices is t-colourable. When t ≤ 3 this is easy, and when t = 4, Wagner’s theorem of 1937 shows the conjecture to be equivalent to the four-colour conjecture (the 4CC). However, when t ≥ 5 it has remained open. Here we show that when t = 5 it is also equivalent to the 4CC. More precis...

متن کامل

A 64-Dimensional Counterexample to Borsuk's Conjecture

Bondarenko’s 65-dimensional counterexample to Borsuk’s conjecture contains a 64-dimensional counterexample. It is a two-distance set of 352 points.

متن کامل

1342 - 2812 One - Way Functions and the Isomorphism Conjecture

We study the Isomorphism Conjecture proposed by Berman and Hartmanis. It states that all sets complete for NP under polynomial-time many-one reductions are P-isomorphic to each other. From previous research it has been widely believed that all NP-complete sets are reducible each other by one-to-one and length-increasing polynomial-time reductions, but we may not hope for the full p-isomorphism ...

متن کامل

A polynomial counterexample to the Markus-Yamabe Conjecture

We give a polynomial counterexample to both the Markus-Yamabe Conjecture and the discrete Markus-Yamabe problem for all dimensions ≥ 3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009